
LiveCompare
Version 2

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. Built at 2024-04-30T18:42:44

3
4
4
4
5
5
6
7
9

10
11
16
19
26
31
42

1 LiveCompare
2 Release notes
2.1 LiveCompare 2.5 release notes
2.2 LiveCompare 2.4 release notes
2.3 LiveCompare 2.3 release notes
2.4 LiveCompare 2.2 release notes
2.5 LiveCompare 2.1 release notes
2.6 LiveCompare 2.0 release notes
3 Requirements
4 Supported technologies
5 Command-line usage
6 Advanced usage
7 EDB Postgres Distributed support
8 Oracle support
9 Settings
10 Licenses

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 2

1 LiveCompare

LiveCompare is designed to compare any number of databases to verify they're identical. The tool compares the databases and generates a comparison
report, a list of differences, and handy DML scripts so you can optionally apply the DML and fix the inconsistencies in any of the databases.

By default, the comparison set includes all tables in the database. LiveCompare allows checking of multiple tables concurrently (multiple worker
processes) and is highly configurable to allow checking just a few tables or just a section of rows in a table.

Each database comparison is called a comparison session. When the program starts for the first time, it starts a new session and starts comparing table
by table. In standalone mode, once all tables are compared, the program stops and generates all reports. You can start and stop LiveCompare without
losing context information, so you can run it at convenient times.

Each table comparison operation is called a comparison round. If the table is too big, LiveCompare splits the table into multiple comparison rounds that
are also executed in parallel, alongside other tables that are being carried on by other workers at the same time.

In standalone mode, the initial comparison round for a table starts from the beginning of the table (oldest existing PK) to the end of the table (newest
existing PK). New rows inserted after the round starts are ignored. LiveCompare sorts the PK columns to get min and max PK from each table. For each PK
column that's unsortable, LiveCompare casts its content to string . In PostgreSQL, you achieve this by using ::text . In Oracle, use to_char .

When executing the comparison algorithm, each worker requires N+1 database connections, where N is the number of databases being compared. The
extra required connection is to an output/reporting database, where the program cache is kept too, enabling you to stop and resume a comparison
session.

You can manually recheck any differences found by the comparison algorithm at a later, convenient time. We recommend doing this to allow a replication
consistency check. Upon the difference recheck, replication might have caught up on that specific row and the difference doesn't exist anymore, so the
difference is removed. Otherwise it's marked as permanent.

At the end of the execution, the program generates a DML script so you can review it and fix differences one by one. Or you can apply the entire DML script
to fix all permanent differences.

You can potentially use LiveCompare to ensure logical data integrity at the row level, for example, for these scenarios:

Database technology migration (Oracle x Postgres).
Server migration or upgrade (old server x new server).
Physical replication (primary x standby).
After failover incidents, for example to compare the new primary data against the old, isolated primary data.
In case of an unexpected split-brain situation after a failover. If the old primary wasn't properly fenced and the application wrote data into it, you
can use LiveCompare to know exactly the data that's present in the old primary and isn't present in the new primary. If they want, the DBA can use
the DML script that LiveCompare generates to apply those data into the new primary.
Logical replication. Three kinds of logical replication technologies are supported: Postgres native logical replication, pglogical, and EDB Postgres
Distributed (PGD, formerly known as BDR).

Comparison performance

LiveCompare is optimized for use on production systems and has various parameters for tuning. Comparison rounds are read-only workloads. An example
use case compared 43,109,165 rows in 6 tables in 9m 17s with 4 connections and 4 workers, giving comparison performance of approximately 77k rows
per second, or 1 billion rows in <4 hours.

This use case is a general use case. For low-load, testing, migration, and other specific scenarios, you might be able to improve speed by changing the
data_fetch_mode setting to use server-side cursors. In our experiments, each kind of server-side cursors provides an increase in performance on use

cases involving either small or large tables.

Security considerations for the user

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 3

For PostgreSQL 13 and earlier, LiveCompare requires a user that can read all data being compared. PostgreSQL 14 introduced a new role,
pg_read_all_data, that can be used for LiveCompare.

When logical_replication_mode = bdr , LiveCompare requires a user with the bdr_superuser role. When logical_replication_mode
= pglogical , LiveCompare requires a user with the pglogical_superuser role.

To apply the DML scripts in PGD, all divergent connections (potentially all data connections) require a user with the bdr_superuser role to disable
bdr.xact_replication .

If PGD is being used, LiveCompare associates all fixed rows with a replication origin called bdr_local_only_origin . LiveCompare also applies the
DML with the transaction datetime far in the past, so if there are any PGD conflicts with real DML being executed on the database, LiveCompare DML
always loses the conflict.

With the default setting of difference_fix_start_query , the transaction in apply scripts changes role to the owner of the table to prevent
database users from gaining access to the role applying fixes by writing malicious triggers. As a result, the user for the divergent connection needs to be
able to switch role to the table owner.

2 Release notes

The LiveCompare documentation describes the latest version of LiveCompare 2 including minor releases and patches. The release notes in this section
provide information on what is new in each release.

Version Release Date

2.5 May 09 2023

2.4 Nov 29 2022

2.3 Aug 15 2022

2.2 Jun 14 2022

2.1 Mar 31 2022

2.0 Feb 15 2022

2.1 LiveCompare 2.5 release notes

Released: 09 May 2023

LiveCompare 2.5 includes the following new features, enhancements, bug fixes, and other changes:

Type Description

Feature Support for EDB Postgres Distributed 5.

Enhancement LiveCompare now holds a version agnostic list of reserved words for Oracle and Postgres, used to properly handle quoted
identifiers.

Bug fix Fixed an issue where the HandleIgnoredColumns method was failing in mixed comparison mode.

Bug fix Fixed an issue where the PrepareMask method was failing when using a custom collate.

Bug fix Fixed an issue where using the node_name caused LiveCompare to try the pglogical metadata for PGD 4 and 5.

2.2 LiveCompare 2.4 release notes

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 4

Released: 29 Nov 2022

LiveCompare 2.4 includes the following new features, enhancements, bug fixes, and other changes:

Type Description

Bug fix Fixed an issue where QueryTablePKColumns would run slowly on tables with composite primary keys.

Bug fix Fixed an issue where LiveCompare was not handling time columns correctly.

Bug fix Fixed an issue where connection strings containing single-quotes or apostrophes were not handled
correctly.

Bug fix Fixed issue whereby the --recheck option could throw an unhandled exception in some circumstances.

2.3 LiveCompare 2.3 release notes

Released: 15 Aug 2022

LiveCompare 2.3 includes the following new features, enhancements, bug fixes, and other changes:

Type Description ID

Enhancement Support for RedHat Enterprise Linux (RHEL) 8 on IBM Power
(ppc64le).

Enhancement Support for SLES 12 SP5 on IBM Power (ppc64le).

Enhancement Support for SLES 15 SP3 on IBM Power (ppc64le).

Enhancement Support for Ubuntu 22.04 (Jammy) on x86_64.

Enhancement Support for Debian 11 (Bullseye) on x86_64.

2.4 LiveCompare 2.2 release notes

Released: 14 Jun 2022

LiveCompare 2.2 includes the following new features, enhancements, and bug fixes:

Type Description ID

Feature Added --dry-run execution mode, which allows users to validate the .ini file and view some useful comparison
information, without running comparison session. See Dry-run mode for more information.

LIV-
142,
RT78
462

Feature Any abort messages received during the comparison session are printed in chronological order.

Feature Displays the list of connections, including technology, version, if the connection is a tiebreaker or a source of truth, and if
it's reachable.

Feature Displays the Table Filter if it is configured.

Feature
Lists the tables that are included in the comparison. This is the list of common tables that exist across all connections, after
applying the Table Filter . For each table, shows the Column Filter , Row Filter and Comparison Key ,
if applicable.

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 5

Enhancement Support for SLES 12 on x86_64. LIV-
112

Enhancement Support for SLES 15 on x86_64. LIV-
113

Enhancement Updated the list of reserved words according to Postgres kwlist source code.

LIV-
141,
RT80
745

Enhancement The main progress bar percentage is now using a float instead of an integer. Previously, the number was rounded up.

LIV-
138,
RT80
745

Enhancement

When edb_redwood_date is enabled in EPAS, the date columns are created as timestamp columns. This type
mismatch was previously detected as a mismatch in the Common Hash, which triggers a full row comparison. Performance
is improved by handling this mismatch in the Common Hash (which is faster than a full row), by checking the
edb_redwood_date setting in these cases.

LIV-
153

Enhancement Demoted hash mismatch log messages from WARNING to DEBUG. LIV-
145

Enhancement Logs now include the application_name in the message. LIV-
141

Enhancement
Documented the behavior of using the current timestamp in Row Filter on Postgres or EPAS when
data_fetch_mode = prepared_statements (the default). In this situation, it's also required to set
data_fetch_mode = server_side_cursors_with_hold or server_side_cursors_without_hold .

LIV-
155

Enhancement Improved performance when generating the apply DML scripts when there is an increased number of divergences detected. LIV-
159

Bug fix Fixed a problem where an array column being considered as a Comparison Key caused the comparison on a table to be
aborted due to an exception.

LIV-
38,
LIV-
154,
RT81
758

Bug fix

A problem was resolved where the number of divergent and processed rows was not being properly updated after the
comparison round, only by a Heart Beat. In this case, the rows were outdated, showing only the position since the last Heart
Beat. For tables where the comparison took less than min_time_between_heart_beats , it would always indicate
zero.

LIV-
149,
RT75
805

Bug fix Fixed a corner case where unhandled exceptions could cause the comparison worker to hang.

LIV-
140,
RT80
745

Bug fix Normalizing decimal values to avoid false positives when comparing Oracle versus Postgres. LIV-
153

Bug fix Fix a corner case in which if comparison_algorithm = block_hash and buffer_size = 1 , and there were
any divergences found, the comparison would not advance due to an issue in the cursor advancing algorithm.

LIV-
150

Bug fix Allow the same table to be configured in multiple filter sections. LIV-
156

Type Description ID

2.5 LiveCompare 2.1 release notes

Released: Mar 31 2022

LiveCompare 2.1 includes the following new features, bug fixes, and other changes:

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 6

Type Description ID

Feature Support for EDB Postgres Distributed 4.

LI
V-
1
3
1

Feature
New setting min_time_between_heart_beats , which tells LiveCompare to log the comparison progress at every heart beat,
by default set to 30 seconds using the INFO log level.

LI
V-
1
2
8

Feature
New settings comparison_cost_limit and comparison_cost_delay that, when greater than 0, tell each worker to take
a nap of comparison_cost_delay seconds (for example, 0.5) after processing comparison_cost_limit number of
rows.

LI
V-
1
6

Change
Default value for parallel_chunk_rows set to 0 , which disables table splitting by default, as recent investigation proved to
cause performance decrease for general use cases. For more information, see Compare mode.

LI
V-
1
3
0

Change Demoted to DEBUG the log message about the number of processed rows from CanAdvanceCursors method.

LI
V-
1
2
9

Bug fix Fixed an issue for Oracle versus Postgres comparisons of the timestamp(6) data type where failing with ORA-01830 .

LI
V-
1
2
7

2.6 LiveCompare 2.0 release notes

Released: 15 Feb 2022

LiveCompare 2.0 includes the following new features, enhancements, bug fixes, and other changes:

Type Description I
D

Feature
New section in setting called Comparison Key allows users to define a custom comparison key (list of columns) per table.
This can be useful for tables without primary keys or unique indexes. See Comparison Key for more information.

L
I
V
-
5

Feature

If the table has no user-defined comparison key or primary key, LiveCompare now tries to use the unique indexes from the table.
As tables can have multiple unique indexes, LiveCompare prefers to use the index where columns are not nullable. If not
possible, then LiveCompare tries to use the first unique index that has less columns. If there is no unique indexes, then
LiveCompare tries to use all columns from the table as a comparison key. Please note that LiveCompare does not try to ignore
nullable columns from unique indexes.

L
I
V
-
3
9

Feature
When using all columns from the table as a comparison key, LiveCompare now ignores the nullable columns to avoid false
positives when considering all columns. This behavior can be disabled by setting ignore_nullable = false .

L
I
V
-
9
6

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 7

Feature
When using an user-defined comparison key or all columns from the table as a comparison key, LiveCompare now checks if they
would enforce uniqueness. If when using the column set there is any duplicate values, then LiveCompare aborts the comparison
on the table. This behavior can be disabled by setting check_uniqueness_enforcement = false .

L
I
V
-
1
1
9

Enhancement Added support to Oracle 21c.

L
I
V
-
4
7

Enhancement

On Oracle 12c and newer, LiveCompare is already able to use a common hash to allow comparison_algorithm =
block_hash and comparison_algorithm = row_hash , which are faster and allow table splitting among multiple
worker processes. This is done on Oracle side using the standard_hash() function, which was introduced on Oracle 12c.
Now LiveCompare also allows comparison_algorithm = block_hash and comparison_algorithm =
row_hash on Oracle 11g, by using the equivalent function sys.dbms_crypto.hash() , provided that the user has
EXECUTE privileges on the sys.dbms_crypto Oracle system package.

L
I
V
-
7
9

Enhancement LiveCompare schema can now be added to a replication-enabled (EDB Postgres Distributed, pglogical or native logical
replication) database.

L
I
V
-
4
2

Enhancement LiveCompare can use the new pg_read_all_data role in PostgreSQL 14.

L
I
V
-
7
3

Enhancement Abort with a proper message if any database version is not supported.

Change Package has been renamed to edb-livecompare from 2ndq-livecompare .

Change Executable has been renamed to livecompare from 2ndq-livecompare .

Bug fix Properly quote the unicode sequence \u0000 to avoid an error when generating DML.

L
I
V
-
9
8

Bug fix Fixed an issue where the number of total rows was displayed incorrectly when the table was split into multiple round parts.

L
I
V
-
1
4

Bug fix
Fixed an issue where empty BLOB on Oracle when compared against an empty bytea on Postgres was generating a false
positive.

L
I
V
-
1
0
3

Type Description I
D

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 8

Bug fix Fixed an issue where connectivity issues were causing exceptions aborting the whole comparison session. Now LiveCompare is
able to reconnect and continue the comparison if possible.

L
I
V
-
8
4

Bug fix Fixed an unhandled exception on the recheck mode if there are any divergences.

L
I
V
-
1
0
7

Bug fix
Fixed an issue where the table comparison was not being aborted if the table didn't exist on a connection and
logical_replication_mode was disabled.

L
I
V
-
1
0
8

Bug fix Fixed an issue where fields of timestamp data type were always generating a mismatching hash between Oracle and
Postgres.

Bug fix Fixed an issue where ignored columns were still being considered in the common hash.

Type Description I
D

3 Requirements

LiveCompare requires:

Python 3.6 or 3.7
PostgreSQL / EDB Postgres Extended 9.5+ / EDB Postgres Advanced Server 11+ (on the output connection)
PostgreSQL / EDB Postgres Extended 9.4+ / EDB Postgres Advanced Server 11+ or Oracle 11g+ (on the data connections being compared)

LiveCompare requires Debian 10+, Ubuntu 16.04+, SLES 12 SP5 and 15 SP3, or CentOS/RHEL/RockyLinux/AlmaLinux 7+.

You can install LiveCompare from the EnterpriseDB products/livecompare repository. For details, see the EDB customer portal.

LiveCompare installs on top of either:

The latest Python version for Ubuntu, Debian, and CentOS/RHEL 8, as provided by the python3 packages
Python 3.6 for CentOS/RHEL 7, as provided by the python-36 packages

On CentOS/RHEL distributions, LiveCompare also requires the EPEL repository. For details, see the EPEL webpage.

Specifically on CentOS/RHEL version 7, the Python component tqdm is too old (< 4.16.0). You can install the latest tqdm using pip or pip3 for the
user that is running LiveCompare:

pip install --user tqdm --upgrade

If running LiveCompare against an Oracle database, Oracle Instant Client must be installed. See Oracle support requirements for more information.

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 9

https://techsupport.enterprisedb.com/customer_portal/sw/livecompare/
https://fedoraproject.org/wiki/EPEL

LiveCompare with TPAexec

You can use the following sample config for TPAexec to build a server with LiveCompare and PostgreSQL 11 :

For details about TPAexec, see the EDB customer portal.

4 Supported technologies

LiveCompare can connect to and compare data from a list of technologies, including PostgreSQL, EDB Postgres Distributed (PGD, formerly known as
BDR), and Oracle.

architecture:: M1
cluster_name::
livecompare_m1
cluster_tags:: {}{}

cluster_vars::
 postgres_coredump_filter:: '0xff'
 postgres_version:: '13'
 postgresql_flavour:: postgresql
 repmgr_failover::
manual
 tpa_2q_repositories::
 -- products/livecompare/release
 packages::
 common::
 -- edb-livecompare
 use_volatile_subscriptions:: true

locations::
-- Name:: main

instance_defaults::
 image:: tpa/rocky
 platform::
docker
 vars::
 ansible_user:: root

instances::
-- Name::
livem1node1
 location:: main
 node:: 1
 role:: primary
 published_ports::
 -- 5401:5432
-- Name::
livem1node2
 location:: main
 node:: 2
 role:: replica
 upstream::
livem1node1
 published_ports::
 -- 5402:5432

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 10

https://techsupport.enterprisedb.com/customer_portal/sw/tpa/

LiveCompare has three kinds of connections:

InitialInitial (optional): Used to fetch metadata about pglogical or PGD connections. Required if data connections are pglogical or PGD, and if
replication_sets or node_name settings are used. Requires logical_replication_mode = pglogical or
logical_replication_mode = bdr . A pglogical- or PGD-enabled database is required.

DataData: The actual database connection that the tool connects to to perform data comparison. The first connection in the list is used to solve Table
Filter and Row Filter , and is also used with the Initial Connection' to gather information about PGD nodes. If
logical_replication_mode = bdr and all_bdr_nodes = on , then LiveCompare considers all PGD nodes that are part of
the same PGD cluster as the Initial Connection`. In this case, you don't need to define data connections individually. The fix can be
potentially applied in all data connections, as comparison and consensus decisions work per row.
OutputOutput (mandatory): Where LiveCompare creates a schema called livecompare , some tables, and views. This is required to keep progress and
reporting data about comparison sessions. It must be a PostgreSQL or 2ndQPostgres connection.

The table shows versions and details about supported technologies and the context in which you can use them in LiveCompare.

Technology Versions Possible connections

PostgreSQL 10, 11, 12, 13, 14, 15, and 16 Data and output

EDB PostgreSQL Extended (PGE) 10, 11, 12, 13, 14, 15, and 16 Data and output

EDB PostgreSQL Advanced Server
(EPAS)

11, 12, 13, 14, 15, and 16 Data and output

pglogical 2 and 3 Initial, data, and output

EDB Postgres Distributed (PGD) 1, 2, 3, 4, and 5 Initial, data, and output

Oracle 11g, 12c, 18c, 19c, and 21c A single data connection

PgBouncer support

You can use LiveCompare against nodes through PgBouncer. However, you must use pool_mode=session because LiveCompare uses prepared
statements on PostgreSQL, which isn't possible when pool_mode is either transaction or statement .

5 Command-line usage

Compare mode

Copy any /etc/livecompare/template*.ini to use in your project and adjust as necessary. See Settings.

cp /etc/livecompare/template_basic.ini my_project.ini

livecompare my_project.ini

While LiveCompare executes, N+1 progress bars appear, where N is the number of processes. (You can specify the number of processes in the settings.)
The first progress bar shows overall execution. The other progress bars show the current table being processed by a specific process.

The information being shown for each table is, from left to right:

Number of the process

Table name

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 11

Status, which can be the ID of the comparison round followed by the current table chunk.

p1/1 means the table wasn't split. A status of setup means the table is being analyzed (checking row count and splitting if necessary).

Number of rows processed

Number of total rows being considered in this comparison round

Time elapsed

Estimated time to complete

Speed in records per second

When table splitting is enabled (parallel_chunk_rows > 0), if a table has more rows than the parallel_chunk_rows setting, then a hash
function is used to determine the job that considers each row. This can slow down the comparison individually. However the comparison as a whole might
benefit from parallelism for the given table.

While the program is executing, you can cancel it at any time by pressing Ctrl-CCtrl-C. A message like the following appears:

Manually stopping session 6... You can resume the session with:

livecompare my_project.ini 6

ImportantImportant

If LiveCompare is running in the background or running in another shell, you can still softly stop it. It keeps the PID of the master process
inside the session folder (lc_session_6 in the example) in a file named livemaster.pid . You can then invoke kill -2 <PID> to
softly stop it.

Then, at any time you can resume a previously canceled session, for example:

livecompare my_project.ini 6

When the program ends, if it found no inconsistencies, the output is similar to the following:

Saved file lc_session_5/summary_20190514.out with the complete table summary.
You can also get the table summary by connecting to the output database and executing:
select * from livecompare.vw_table_summary where session_id = 5;

Elapsed time: 0:02:10.970954
Processed 3919015 rows in 6 tables using 3 processes.
Found 0 inconsistent rows in 0 tables.

If any inconsistencies were found, the output looks like this:

Comparison finished, waiting for remaining difference checks...

Outstanding differences:

+--------------+-------------------+-----------------+------------------+----------------------+---------------
----+---------------------------+
| session_id | table_name | elapsed_time | num_total_rows | num_processed_rows |
num_differences | max_num_ignored_columns |
|--------------+-------------------+-----------------+------------------+----------------------+---------------

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 12

----+---------------------------|
| 6 | public.categories | 00:00:00.027864 | 18 | 18 |
4 | |
+--------------+-------------------+-----------------+------------------+----------------------+---------------
----+---------------------------+

Saved file lc_session_6/summary_20200129.out with the complete table summary.
You can also get the table summary by connecting to the output database and executing:
select * from livecompare.vw_table_summary where session_id = 6;

Elapsed time: 0:00:50.149987
Processed 172718 rows in 8 tables from 3 connections using 2 workers.
Found 4 inconsistent rows in 1 tables.

Saved file lc_session_6/differences_20200129.out with the list of differences per table.
You can also get a list of differences per table with:
select * from livecompare.vw_differences where session_id = 6;
Too see more details on how LiveCompare determined the differences:
select * from livecompare.vw_consensus where session_id = 6;

Script lc_session_6/apply_on_the_first_20200129.sql was generated, which can be applied to the first
connection and make it consistent with the majority of connections.
You can also get this script with:
select difference_fix_dml from livecompare.vw_difference_fix where session_id = 6 and connection_id =
'first';

Recheck mode

In a PGD environment, any divergence that PGD finds can later not exist, as the replication caught up due to eventual consistency. Depending on several
factors, replication lag can cause LiveCompare to report false positives.

To overcome that, in a later moment when replication lag has decreased or data has already caught up, you can manually execute a recheck only on the
differences that were previously found. This execution mode is called recheck. You can execute it like this:

livecompare my_project.ini 6 --recheck

In this mode, LiveCompare generates separate recheck logs and updates all reports that already exist in the lc_session_X directory.

ImportantImportant

If resuming a compare or executing under recheck , LiveCompare checks whether the settings and connections attributes are the same as
when the session was created. If any divergence is found, it quits the execution and gives a message.

Conflicts mode

To run LiveCompare in conflicts mode, invoke it with:

livecompare my_project.ini --conflicts

For more details about the conflicts mode, see PGD support.

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 13

Dry-run mode

New FeatureNew Feature

LiveCompare dry-run mode support is available for LiveCompare version 2.2.0 and later.

For example, suppose you have the following INI file:

As the DSN under Output Connection (the LiveCompare cache database) is incorrect, running LiveCompare initially fails with:

Output connection is not reachable.

After fixing this, then the output connection is now reachable. But suppose that only one of the data connections is set correctly. In that case,
LiveCompare fails again with:

At least two reachable connections are required.
Following connections are unreachable: first, third.
Following connections are reachable: second.

LiveCompare can start a comparison with at least two data connections available. So you go ahead and fix the third connection. But LiveCompare still fails
with:

A difference_tie_breakers host is not a reachable connection: first.

This happens because the example set difference_tie_breakers = first , and any connection set as a tie breaker or source of truth needs to
be reachable.

After fixing all those issues, then LiveCompare can start the comparison.

However, when setting up a comparison from scratch, you can check beforehand whether LiveCompare will abort with a configuration error. Further
checks of this nature are all shown in the order LiveCompare performs them.

[General Settings][General Settings]
logical_replication_mode = offoff
difference_tie_breakers = first

[First[First
Connection]Connection]
dsn = dbname=testb

[Second[Second
Connection]Connection]
dsn =
dbname=testdb2

[Third[Third
Connection]Connection]
dsn =
dbname=testdb3

[Output[Output
Connection]Connection]
dsn =
dbname=liveoutpu

[Table Filter][Table Filter]
schemas = schema_name =
'public'

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 14

You can do this with the --dry-run mode, which:

Prints all execution aborts that will happen due to configuration issues.
Prints the list of connections with some details, including if it's reachable.
Prints the table filter.
After applying the table filter, prints the list of tables that are common to the reachable connections.

Here's one sample output, given the example .ini file, and all configuration errors regarding unreachable connections:

$ livecompare test.ini --dry-run
EnterpriseDB LiveCompare 2.2.0, dry-run mode

Output connection is not reachable.

At least two reachable connections are required.
Following connections are unreachable: first, third.
Following connections are reachable: second.

A difference_tie_breakers host is not a reachable connection: first.

Connections

+--------+--------------+-----------+---------------+---------------------+-----------+---------------+-------
------------+-------------+
| ID | Technology | Version | PGD Version | Pglogical Version | Initial | Tie Breaker |
Source of Truth | Reachable |
|--------+--------------+-----------+---------------+---------------------+-----------+---------------+-------
------------+-------------|
| second | postgresql | 110015 | - | - | False | False |
False | True |
| first | postgresql | - | - | - | False | True | False
| False |
| third | postgresql | - | - | - | False | False | False
| False |
| output | postgresql | - | - | - | - | - | -
| False |
+--------+--------------+-----------+---------------+---------------------+-----------+---------------+-------
------------+-------------+

Table Filter

publications = ''
replication_sets = ''
schemas = schema_name = 'public'
tables = ''

Tables

+---------------------+--------------+-----------------+-------------------------+
| Table Name | Row Filter | Column Filter | Custom Comparison Key |
|---------------------+--------------+-----------------+-------------------------|
public.categories	-	-	-
public.cust_hist	-	-	-
public.customers	-	-	-
public.departments	-	-	-
public.dept_emp	-	-	-

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 15

public.dept_manager	-	-	-
public.employees	-	-	-
public.inventory	-	-	-
public.orderlines	-	-	-
public.orders	-	-	-
public.products	-	-	-
public.reorder	-	-	-
public.salaries	-	-	-
public.tbl	-	-	-
public.titles	-	-	-
+---------------------+--------------+-----------------+-------------------------+

6 Advanced usage

When LiveCompare runs, it creates a folder called lc_session_<session_id> in the working directory. This folder contains the following files:

lc_<execution_mode>_<current_date>.log — Log file for the session.

summary_<current_date>.out — A list of all tables that were processed. For each table, it shows the time LiveCompare took to process the
table, the total number of rows and how many rows were processed, how many differences were found in the table, and the maximum number of
ignored columns, if any.

To get the complete summary, you can also execute the following query against the output database:

select *
from <output_schema>.vw_table_summary
where session_id = <session_id>;

differences_<current_date>.out — Useful information about any differences. This file isn't generated if there are no differences.

The following is an example of a difference list:

+-------------------+-------------------------+-----------------+---------------------+
| table_name | table_pk_column_names | difference_pk | difference_status |
|-------------------+-------------------------+-----------------+---------------------|
public.categories	category	(7)	P
public.categories	category	(10)	P
public.categories	category	(17)	P
public.categories	category	(18)	P
+-------------------+-------------------------+-----------------+---------------------+

To get the full list of differences with all details, you can execute the following query against the output database:

```postgresql
select *
from <output_schema.vw_differences
where session_id = <session_id>;
```

To understand how LiveCompare consensus worked to decide which databases are divergent, the view
`vw_consensus` can provide details on the consensus algorithm:

```postgresql

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 16



select *
from <output_schema.vw_consensus
where session_id = <session_id>;
```

apply_on_the_first_<current_date>.sql — If there are any differences, this file shows a DML command to apply on the first database
to make it consistent with all other databases. The following is an example of a script for the differences shown in the table:

BEGIN;

DELETE FROM public.categories WHERE (category) = 7;
UPDATE public.categories SET categoryname = $lc1$Games Changed$lc1$ WHERE (category) = 10;
INSERT INTO public.categories (category,categoryname) VALUES (17, $lc1$Test 1$lc1$);
INSERT INTO public.categories (category,categoryname) VALUES (18, $lc1$Test 2$lc1$);

COMMIT;

LiveCompare generates this script. To fix the inconsistencies in the first database, execute the script in it.

LiveCompare generates a similar apply_on_*.sql script for each database that has inconsistent data.

Aborting comparisons

Before starting the comparison session, LiveCompare tries all connections. If the number of reachable connections isn't at least two, then LiveCompare
aborts the whole session and gives an error message. If at least two connections are reachable, then LiveCompare proceeds with the comparison session.
For all connections, LiveCompare writes a flag connection_reachable in the connections table in the cache database.

For all reachable connections, LiveCompare does some sanity checks around the database technologies and the setting
logical_replication_mode . If any of the sanity checks fail, then LiveCompare aborts the comparison and gives an error message.

Considering the tables available on all reachable connections, LiveCompare builds the list of tables to compare, taking into account the table filter. If a
specific table doesn't exist on at least two connections, then the comparison on that specific table is aborted.

LiveCompare initially gathers metadata from all tables. This step is called setup. If any errors happen during the setup, for example, the user doesn't have
access to a specific table, then it's called a setup error. If abort_on_setup_error is enabled, then LiveCompare aborts the whole comparison
session, and the program finishes with an error message. Otherwise, only the table having the error has its table comparison aborted, and LiveCompare
moves on to the next table.

For each table that LiveCompare starts the table comparison on, LiveCompare first checks the table definition on all reachable connections. If the tables
don't have the same columns and column data types, LiveCompare applies column_intersection . If there are no columns to compare, then
LiveCompare aborts the table comparison.

Comparison key

For each table being compared, when gathering the table metadata, LiveCompare builds the comparison key to use in the table comparison, following
these rules:

1. Use the custom comparison key if configured.

2. Alternatively, use PK if available.

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 17

3. Alternatively, if the table has UNIQUE indexes, among the UNIQUE indexes that have all NOT NULL columns, use the UNIQUE index with
fewer columns.

4. If none of these are possible, try to use all NOT NULL columns as a comparison key. NULL columns are also considered if ignore_nullable
= false .

If you decide to use strategies 1 or 4 as a comparison key, then LiveCompare also checks for uniqueness on the key. If uniqueness isn't possible, then
LiveCompare aborts the comparison on that table. You can disable this behavior by using check_uniqueness_enforcement = false .

Differences to fix

LiveCompare can identify and provide fixes for the following differences:

A row exists in the majority of the data connections. The fix is an INSERT on the divergent databases.
A row doesn't exist in the majority of the data connections. The fix is a DELETE on the divergent databases.
A row exists in all databases, but some column values mismatch. The fix is an UPDATE on the divergent databases.

The default setting is difference_statements = all , which means that LiveCompare tries to apply all three DML types (INSERT , UPDATE ,
and DELETE) for each difference it finds. But you can specify the type of DML for LiveCompare to consider when providing difference fixes. Change the
value of the setting difference_statements to any of these values:

all (default): Fixes INSERT , UPDATE , and DELETE DML types.
inserts : Fixes only INSERT DML types.
updates : Fixes only UPDATE DML types.
deletes : Fixes only DELETE DML types.
inserts_updates : Fixes only INSERT and UPDATE DML types.
inserts_deletes : Fixes only INSERT and DELETE DML types.
updates_deletes : Fixes only UPDATE and DELETE DML types.

When difference_statements has the values all , updates , inserts_updates , or updates_deletes , then you can tell LiveCompare
to ignore any UPDATE that sets NULL to a column.

Difference log

The table difference_log stores all information about differences every time LiveCompare checks them. You can run LiveCompare in recheck mode
multiple times, so this table shows how the difference evolved over the time window in which LiveCompare was rechecking it.

Detected (D)Detected (D): The difference was just detected. In recheck and fix modes, LiveCompare marks all Permanent and Tie differences as Detected so it
can recheck them.

Permanent (P)Permanent (P): After rechecking the difference, if data is still divergent, LiveCompare marks the difference as Permanent.

Tie (T)Tie (T): This entry is the same as Permanent, but there isn't enough consensus to determine the connections that are the majority.

Absent (A)Absent (A): If, upon a recheck, LiveCompare finds that the difference doesn't exist anymore, that is, the row is now consistent between both
databases, then LiveCompare marks the difference as Absent.

Volatile (V)Volatile (V): If, upon a recheck, xmin changed on an inconsistent row, then LiveCompare marks the difference as Volatile.

Ignored (I)Ignored (I): You can stop difference recheck of certain differences by manually calling the function
<livecompare_schema_name>.accept_divergence(session_id, table_name, difference_pk) in the output PostgreSQL

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 18

connection. For example:

SELECT livecompare.accept_divergence(
 2 -- session_id
 , 'public.categories' -- table_name
 , $$(10)$$ -- difference_pk
);

7 EDB Postgres Distributed support

You can use LiveCompare against EDB Postgres Distributed (PGD, formerly known as BDR) nodes as well as non-PGD nodes.

Setting logical_replication_mode = bdr makes the tool assume that all databases being compared belong to the same PGD cluster. Then you
can specify node names as connections and replication sets to filter tables.

For example, suppose you can connect to any node in the PGD cluster, which we'll refer to as the initial connection. By initially connecting to this node,
LiveCompare can check PGD metadata and retrieve connection information from all other nodes.

Now suppose you want to compare three PGD nodes. As LiveCompare can connect to any node starting from the initial connection, you don't need to
define dsn or any connection information for the data connections. You only need to define node_name . LiveCompare searches in PGD metadata
about the connection information for that node and then connects to the node.

For LiveCompare to connect to all other nodes by fetching PGD metadata, LiveCompare must be able to connect to them using the same DSN from the
PGD view bdr.node_summary in the field interface_connstr . In this case, we recommend running LiveCompare on the same machine as the
initial connection as the postgres user. If that's not possible, then define the dsn attribute in all data connections.

You can also specify replication sets as table filters. LiveCompare uses PGD metadata to build the table list, considering only tables that belong to the
replication sets you defined in the replication_sets setting.

For example, you can create an .ini file to compare three PGD nodes:

[General Settings][General Settings]
logical_replication_mode =
bdr
max_parallel_workers = 4

[Initial[Initial
Connection]Connection]
dsn = port=5432 dbname=live
user=postgres

[Node1[Node1
Connection]Connection]
node_name = node1

[Node2[Node2
Connection]Connection]
node_name = node2

[Node3[Node3
Connection]Connection]
node_name = node3

[Output[Output
Connection]Connection]
dsn = port=5432 dbname=liveoutput user=postgres

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 19

You can also tell LiveCompare to compare all active nodes in the PGD cluster. To do so:

1. Under General Settings , enable all_bdr_nodes = on .
2. Under Initial Connection , specify an initial connection.

Additional data connections aren't required.

For example:

When all_bdr_nodes = on , LiveCompare uses the Initial Connection setting to fetch the list of all PGD nodes. While additional data
connections aren't required, if set, they're appended to the list of data connections. For example, you can compare a whole PGD cluster against a single
Postgres connection, which is useful in migration projects:

The settings node_name and replication_sets are supported for the following technologies:

PGD 1, 2, 3, and 4

[Table Filter][Table Filter]
replication_sets = set_name =
'bdrgroup'

[General Settings][General Settings]
logical_replication_mode =
bdr
max_parallel_workers = 4
all_bdr_nodes = onon

[Initial[Initial
Connection]Connection]
dsn = port=5432 dbname=live
user=postgres

[Output[Output
Connection]Connection]
dsn = port=5432 dbname=liveoutput user=postgres

[Table Filter][Table Filter]
replication_sets = set_name =
'bdrgroup'

[General Settings][General Settings]
logical_replication_mode =
bdr
max_parallel_workers = 4
all_bdr_nodes = onon

[Initial[Initial
Connection]Connection]
dsn = port=5432 dbname=live
user=postgres

[Old[Old
Connection]Connection]
dsn = host=oldpg port=5432 dbname=live
user=postgres

[Output[Output
Connection]Connection]
dsn = port=5432 dbname=liveoutput user=postgres

[Table Filter][Table Filter]
replication_sets = set_name =
'bdrgroup'

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 20

pglogical 2 and 3

To enable pglogical metadata fetch instead of PGD, set logical_replication_mode = pglogical instead of logical_replication_mode
= bdr .

PGD witness nodes

Using replication sets in PGD, you can configure specific tables to include in the PGD replication. You can also specify the nodes to receive data from these
tables by configuring the node to subscribe to the replication set the table belongs to. This setting allows for different architectures such as PGD sharding
and the use of PGD witness nodes.

A PGD witness is a regular PGD node that doesn't replicate any DML from other nodes. The purpose of the witness is to provide quorum in Raft Consensus
voting. (For details on the PGD witness node, see Witness nodes in the PGD documentation.) Replication set configuration determines whether the
witness replicates DDLs. This means that there are two types of PGD witnesses:

A completely empty node, without any data nor tables
A node that replicates DDL from other nodes, so it has empty tables

In the first case, even if the PGD witness is included in the comparison (either manually under [Connections] or using all_bdr_nodes = on),
because the witness doesn't have any tables, the following message is logged:

Table public.tbl does not exist on connection node1

In the second case, the table exists on the PGD witness. However, it's not correct to report data missing on the witness as divergences. So, for each table,
LiveCompare checks the following information on each node included in the comparison:

The replication sets that the node subscribes to
The replication sets that the table is associated with
The replication sets, if any, you defined in the filter replication_sets under Table Filter

If the intersection among all three lists of replication sets is empty, which is the case for the PGD witness, then LiveCompare logs this message:

Table public.tbl is not subscribed on connection node1

In both cases, the comparison for that table proceeds on the nodes where the table exists, and the table is replicated according to the replication sets
configuration.

Differences in a PGD cluster

LiveCompare makes changes only to the local node. It's important that corrective changes don't get replicated to other nodes.

When logical_replication_mode = bdr , LiveCompare first checks if a replication origin called bdr_local_only_origin already exists.
(You can configure the name of the replication origin by adjusting the setting difference_fix_replication_origin .) If a replication origin
called bdr_local_only_origin doesn't exist, then LiveCompare creates it on all PGD connections.

ImportantImportant

PGD 3.6.18 introduced the new preexisting bdr_local_only_origin replication origin to use for applying local-only transactions. If
LiveCompare is connected to PGD 3.6.18, it doesn't create this replication origin.

LiveCompare generates apply scripts considering the following:

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 21

https://www.enterprisedb.com/docs/pgd/latest/node_management/witness_nodes/

Set the current transaction to use the replication origin bdr_local_only_origin , so any DML executed has xmin associated with
bdr_local_only_origin .

Set the current transaction datetime to be far in the past, so if there are any PGD conflicts with real DML being executed on the database,
LiveCompare DML always loses the conflict.

After applying a LiveCompare fix script to a PGD node, you can get exactly the rows that were inserted or updated by LiveCompare using the following
query. Replace mytable with the name of any table.

with lc_origin as (
 select roident
 from pg_replication_origin
 where roname = 'bdr_local_only_origin'
)
select t.*
from mytable t
inner join lc_origin r
on r.roident = bdr.pg_xact_origin(t.xmin);

Deleted rows are no longer visible.

LiveCompare requires at least a PostgreSQL user with bdr_superuser privileges to properly fetch metadata.

All of these steps involving replication origins applied only to the output script if the PostgreSQL user has bdr_superuser or PostgreSQL superuser
privileges. Otherwise, LiveCompare generates fixes without associating any replication origin. (Transaction replication is still disabled using SET
LOCAL bdr.xact_replication = off .) However, we recommend using a replication origin when applying the DML scripts. Otherwise,
LiveCompare has the same precedence as a regular user application regarding conflict resolution. Also, as there isn't any replication origin associated
with the fix, you can't use the query to list all rows fixed by LiveCompare.

Between PGD 3.6.18 and PGD 3.7.0, the following functions are used:

bdr.difference_fix_origin_create() : Executed by LiveCompare to create the replication origin specified in
difference_fix_replication_origin (by default, set to bdr_local_only_origin), if this replication origin doesn't exist.
bdr.difference_fix_session_setup() : Included in the generated DML script so the transaction is associated with the replication origin

specified in difference_fix_replication_origin .
bdr.difference_fix_xact_set_avoid_conflict() : Included in the generated DML script so the transaction is set far in the past

(2010-01-01). The fix transaction applied by LiveCompare always loses any conflict.

These functions require a bdr_superuser rather than a PostgreSQL superuser. Starting with PGD 3.7.0, those functions are deprecated. In that case, if
running as a PostgreSQL superuser, LiveCompare uses the following functions to perform the same actions:

pg_replication_origin_create(origin_name) ;
pg_replication_origin_session_setup() ;
pg_replication_origin_xact_setup() .

If a PostgreSQL superuser isn't being used, then LiveCompare includes only the following in the generated DML transaction:

SET LOCAL bdr.xact_replication = off;

Conflicts in PGD

LiveCompare has an execution mode called conflicts . This execution mode is specific for PGD clusters. It works only in PGD 3.6, PGD 3.7, PGD 4, and
PGD 5 clusters.

While compare mode is used to compare all content of tables as a whole, conflicts mode focuses just in tuples/tables that are related to existing

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 22

conflicts that are registered in bdr.apply_log , in case of PGD 3.6, or in bdr.conflict_history , in case of PGD 3.7, PGD 4, and PGD 5.

conflicts execution mode is expected to run much faster than compare mode because it inspects only specific tuples from specific tables.
However, it's not as complete as compare mode for the same reason.

The main objective of this execution mode is to check that the automatic conflict resolution that's being done by PGD is consistent among nodes, that is,
after PGD resolves conflicts, the cluster is in a consistent state.

Although, for the general use case, automatic conflict resolution ensures cluster consistency, there are a few known cases where automatic conflict
resolution can result in divergent tuples among nodes. So the conflicts execution mode from LiveCompare can help with checking and ensuring
consistency, providing a good balance between time and result.

Conflict example

Suppose on node3 , you execute the following query:

SELECT c.reloid::regclass,
 s.origin_name,
 c.local_time,
 c.key_tuple,
 c.local_tuple,
 c.remote_tuple,
 c.apply_tuple,
 c.conflict_type,
 c.conflict_resolution
FROM bdr.conflict_history c
INNER JOIN bdr.subscription_summary s
ON s.sub_id = c.sub_id;

You can see the following conflict in bdr.conflict_history :

reloid | tbl
origin_name | node2
local_time | 2021-05-13 19:17:43.239744+00
key_tuple | {"a":null,"b":3,"c":null}
local_tuple |
remote_tuple |
apply_tuple |
conflict_type | delete_missing
conflict_resolution | skip

This conflict means that when the DELETE arrived from node2 to node3 , there was no row with b = 3 in table tbl . However, the INSERT
might have arrived from node1 to node3 later, which then added the row with b = 3 to node3 . So this is the current situation on node3 :

bdrdb=# SELECT * FROM tbl WHERE b = 3;
 a | b | c
---+---+-----
 x | 3 | foo
(1 row)

While on nodes node1 and node2 , you see this:

bdrdb=# SELECT * FROM tbl WHERE b = 3;
 a | b | c

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 23

---+---+---
(0 rows)

The PGD cluster is divergent.

To detect and fix such divergence, you can execute LiveCompare in compare mode. However, depending on the size of the comparison set (suppose
table tbl is very large), that can take a long time, even hours.

This situation is one in in which conflicts mode can be helpful. In this case, the delete_missing conflict is visible only from node3 , but
LiveCompare can extract the PK values from the conflict logged rows (key_tuple , local_tuple , remote_tuple , and apply_tuple) and
perform an automatic cluster-wide comparison only on the affected table, already filtering by the PK values. The comparison then checks the current row
version in all nodes in the cluster.

Create a check.ini file to set all_bdr_nodes = on , that is, to tell LiveCompare to compare all nodes in the cluster:

[General Settings]
logical_replication_mode = bdr
max_parallel_workers = 2
all_bdr_nodes = on

[Initial Connection]
dsn = dbname=bdrdb

[Output Connection]
dsn = dbname=liveoutput

To run LiveCompare in conflicts mode:

livecompare check.ini --conflicts

After the execution, in the console output, you see something like this:

Elapsed time: 0:00:02.443557
Processed 1 conflicts about 1 tables from 3 connections using 2 workers.
Found 1 divergent conflicts in 1 tables.
Processed 1 rows in 1 tables from 3 connections using 2 workers.
Found 1 inconsistent rows in 1 tables.

Inside folder ./lc_session_X/ (X is the number of the current comparison session), LiveCompare writes the file conflicts_DAY.out
(replacing DAY in the name of the file with the current day). The file shows the main information about all divergent conflicts.

If you connect to database liveoutput , you can see more details about the conflicts, for example, using this query:

SELECT *
FROM livecompare.vw_conflicts
WHERE session_id = 1
 AND conflict_id = 1
ORDER BY table_name,
 local_time,
 target_node;

The output is something like this:

session_id | 1
table_name | public.tbl

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 24

conflict_id | 1
connection_id | node3
origin_node | node2
target_node | node3
local_time | 2021-05-13 19:17:43.239744+00
key_tuple | {"a": null, "b": 3, "c": null}
local_tuple |
remote_tuple |
apply_tuple |
conflict_type | delete_missing
conflict_resolution | skip
conflict_pk_value_list | {(3)}
difference_log_id_list | {1}
is_conflict_divergent | t

The is_conflict_divergent = true means that LiveCompare compared the conflict and found the nodes to be currently divergent in the tables
and rows reported by the conflict. The view livecompare.vw_conflicts shows information about all conflicts, including the non-divergent ones.

LiveCompare also generates the DML script ./lc_session_X/apply_on_the_node3_DAY.sql (where DAY in the name of the file with the
current day):

BEGIN;

SET LOCAL bdr.xact_replication = off;
SELECT pg_replication_origin_session_setup('bdr_local_only_origin');
SELECT pg_replication_origin_xact_setup('0/0', '2010-01-01'::timestamptz);;

SET LOCAL ROLE postgres;
DELETE FROM public.tbl WHERE (b) = (3);

COMMIT;

LiveCompare is suggesting to DELETE the row where b = 3 from node3 because the row doesn't exist on the other two rows. By default,
LiveCompare suggests the DML to fix based on the majority of the nodes.

Running this DML script against node3 makes the PGD cluster consistent again:

psql -h node3 -f ./lc_session_X/apply_on_the_node3_DAY.sql

As the --conflicts mode comparison is much faster than a full --compare , we strongly recommend scheduling a --conflicts comparison
session more often to ensure conflict resolution is providing cluster-wide consistency.

NoteNote

To see the data in bdr.conflict_history in PGD 3.7 or bdr.apply_log in PGD 3.6, run LiveCompare with a user that's a
bdr_superuser or a PostgreSQL superuser.

To be able to see the data in bdr.conflict_history in PGD 3.7+ or bdr.apply_log in PGD 3.6, run LiveCompare with a user that's
bdr_superuser or a PostgreSQL superuser.

Conflicts Filter

You can also tell LiveCompare to filter the conflicts by any of the columns in either bdr.conflicts_history or bdr.apply_log . For example:

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 25

Mixing technologies

Metadata for node_name and replication_sets are fetched in the initial connection. So it must be a pglogical- and/or PGD-enabled database.

The list of tables is built in the first data connection. So the replication_sets condition must be valid in the first connection.

You can perform mixed-technology comparisons, for example:

PGD 1 node versus PGD 3 node
PGD 4 node versus vanilla Postgres instance
Vanilla Postgres instance versus pglogical node

8 Oracle support

You can use LiveCompare to compare data from an Oracle database against any number of PostgreSQL or PGD databases.

For example, you can define technology = oracle in a data connection. You can then use other settings to define the connection to Oracle:

host
port
service
user
password

All other data connections must be PostgreSQL.

Here's a simple example of comparison between an Oracle database and a PostgreSQL database:

[Conflicts Filter][Conflicts Filter]
conflicts = table_name = 'public.tbl' and conflict_type =
'delete_missing'

[General Settings][General Settings]
logical_replication_mode = offoff
max_parallel_workers = 4
oracle_user_tables_only = onon
oracle_ignore_unsortable = onon
column_intersection = onon
force_collate =
C
difference_tie_breakers =
oracle

[Oracle[Oracle
Connection]Connection]
technology =
oracle
host = 127.0.0.1
port = 1521
service = XE
user = LIVE
password = live

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 26

Here, the schema_name in Oracle is the user table sandbox. All table names are schema qualified by default:

Postgres: <schema_name> . <table_name>
Oracle: <user> . <table_name

You can disable schema-qualified table names by setting schema_qualified_table_names = off . You can do this only if
oracle_user_tables_only = on . This setting tells LiveCompare to search only on tables that belong to the Oracle user that's connected. When

schema-qualified table names is disabled, then on Postgres you need to have set a default search_path on your role or configuration. Or, you can use
the connection start_query parameter to set an appropriate search_path , for example:

When schema_qualified_table_names = off , you can also use non-qualified table names in Table Filter , Row Filter , and Column
Filter .

[Postgres[Postgres
Connection]Connection]
technology = postgresql
dsn = dbname=liveoracle user=william

[Output[Output
Connection]Connection]
dsn = dbname=liveoutput user=william

[Table Filter][Table Filter]
schemas = schema_name =
'live'

[General Settings][General Settings]
logical_replication_mode = offoff
max_parallel_workers = 4
oracle_user_tables_only = onon
oracle_ignore_unsortable = onon
column_intersection = onon
force_collate =
C
difference_tie_breakers =
oracle
schema_qualified_table_names = offoff

[Oracle[Oracle
Connection]Connection]
technology =
oracle
host = 127.0.0.1
port = 1521
service = XE
user = LIVE
password = live

[Postgres[Postgres
Connection]Connection]
technology = postgresql
dsn = dbname=liveoracle user=william
start_query = SET search_path = myschema1, myschema2,
public

[Output[Output
Connection]Connection]
dsn = dbname=liveoutput user=william

[Table Filter][Table Filter]
tables = table_name in ('mytable1',
'mytable2')

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 27

NoteNote

The Output Connection is required to write progress and reporting information from LiveCompare.

If you need to compare a PGD database against Oracle, and you want to take advantage of Initial Connection , node_name , and
replication_sets features (described in PGD support), then you can point the last data connection to Oracle, like this:

You also can compare a whole PGD cluster against a single Oracle database, for example:

[General Settings][General Settings]
logical_replication_mode =
bdr
max_parallel_workers = 4
oracle_user_tables_only = onon
oracle_ignore_unsortable = onon
column_intersection = onon
force_collate =
C
difference_tie_breakers =
oracle

[Initial[Initial
Connection]Connection]
dsn = port=5432 dbname=live
user=postgres

[BDR[BDR
Connection]Connection]
node_name = node1

[Oracle[Oracle
Connection]Connection]
technology =
oracle
host = 127.0.0.1
port = 1521
service = XE
user = LIVE
password = live

[Output[Output
Connection]Connection]
dsn = port=5432 dbname=liveoutput user=postgres

[Table Filter][Table Filter]
replication_sets = set_name =
'bdrgroup'

[General Settings][General Settings]
logical_replication_mode =
bdr
max_parallel_workers = 4
oracle_user_tables_only = onon
oracle_ignore_unsortable = onon
column_intersection = onon
force_collate =
C
difference_tie_breakers =
oracle
all_bdr_nodes = onon

[Initial[Initial
Connection]Connection]

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 28

Requirements

LiveCompare works on PostgreSQL databases out-of-the-box. You don't need to install any additional software. But to be able to connect to Oracle,
LiveCompare does requires additional software.

Oracle Instant Client

You need to download and install Oracle Instant Client (or extract it to a specific folder, depending on the operating system you use):

MacOSXMacOSX: Download Oracle Instant Client (64-bit) and extract in ~/lib ;
LinuxLinux: Download Oracle Instant Client (32-bit) (64-bit) and install it on your system, then set LD_LIBRARY_PATH ;
WindowsWindows: Download Oracle Instant Client (32-bit) (64-bit) and extract it into the LiveCompare folder.

cx_Oracle Python module

You need the Python module cx_Oracle installed and available on your system so that LiveCompare can connect to an Oracle database.

Currently, cx_Oracle isn't installable from Linux distribution repositories, so follow the instructions on the cx_Oracle website to install it on your system.

We recommend executing LiveCompare under the postgres operating system user. Then you can install the cx_Oracle module through PIP only for the
postgres user, using the following command:

pip3 install --user cx_Oracle --upgrade

Differences

If LiveCompare finds any difference, it generates a DML script to apply only on the PostgreSQL connections. No DML script to apply on the Oracle
connection is generated.

dsn = port=5432 dbname=live
user=postgres

[Oracle[Oracle
Connection]Connection]
technology =
oracle
host = 127.0.0.1
port = 1521
service = XE
user = LIVE
password = live

[Output[Output
Connection]Connection]
dsn = port=5432 dbname=liveoutput user=postgres

[Table Filter][Table Filter]
replication_sets = set_name =
'bdrgroup'

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 29

http://www.oracle.com/technetwork/topics/intel-macsoft-096467.html
http://www.oracle.com/technetwork/topics/linuxsoft-082809.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/winsoft-085727.html
http://www.oracle.com/technetwork/topics/winx64soft-089540.html
https://oracle.github.io/python-cx_Oracle/
https://cx-oracle.readthedocs.io/en/latest/user_guide/installation.html

BLOB and CLOB data types

LiveCompare can compare CLOB fields from Oracle, provided that the equivalent field in PostgreSQL is of type text . The same goes for BLOB fields from
Oracle. The equivalent in PostgreSQL is of type bytea .

However, by default, LiveCompare doesn't handle BLOB/CLOB fields if they're in the primary key or if the table has no primary key. If that's the case, then
the table is ignored, and LiveCompare logs has a message like this:

ORA-00932: inconsistent datatypes: expected - got BLOB

You can work around this behavior by telling LiveCompare to ignore BLOB/CLOB fields if the table has no primary key. Enable these two settings in the
General Settings section:

oracle_ignore_unsortable = on
column_intersection = on

Incompatible collation

On Oracle, generally the following initialization parameters are set:

NLS_COMP = BINARY
NLS_SORT = BINARY

This means that, regardless of the NLS_LANG and other language settings, all ORDER BY operations in Oracle are performed using the character
binary code.

In Postgres, the equivalent collation that shows the same behavior is the C collation. If your Postgres database was initialized in a different collation,
then by default LiveCompare might find issues when sorting PK values. This can lead to false positives.

To work around that, you can force a collation (say, the C collation) in Postgres so it matches the same sort behavior from Oracle:

If LiveCompare detects that the comparison session involves Oracle and PostgreSQL, then LiveCompare already sets force_collate = C , unless
you set it to another value.

Common hash

By default, LiveCompare has comparison_algorithm = block_hash , even when comparing PostgreSQL to Oracle. However, a common hash is
built following these rules:

The row is fully represented as text by concatenating all column values.
On the Postgres side, timestamp, numeric, and bytea data types are handled to mimic Oracle.
This way, the full row representation is then hashed using MD5 on both sides.
This allows using comparison_algorithm set to block_hash and row_hash .
If there are any mismatches when using block_hash , LiveCompare falls back to row_hash and then full_row , as it does in a Postgres
versus Postgres comparison.
The BLOB, CLOB, and NCLOB fields on Oracle are limited to only the first 2000 characters. comparison_algorithm = full_row allows
comparison of the entire BLOB and CLOB.

force_collate =
C

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 30

On Oracle, the full row representation must not be wider than 4000 characters. If the full row representation is wider than 4000 characters,
LiveCompare aborts the comparison for that specific table, and the following error message is added to the logs:

ORA-01489: result of string concatenation is too long

Later LiveCompare versions will fall back to full_row comparison on these specific tables. For now, a workaround is to configure a separate
comparison sessions only on these tables, using comparison_algorithm = full_row .

The common hash uses the standard_hash function on Oracle 12c and later. On Oracle 11g, the standard_hash function isn't available, so
LiveCompare tries to use the dbms_crypto.hash function instead. However, it might require additional privileges for the user on the Oracle side, for
example:

9 Settings

General settings

logical_replication_mode : Affects how the program interprets connections and table filter settings and also the requirements to check
for in the connections before starting the comparison. Currently the possible values are:

off : Assumes there's no logical replication between the databases.

native : Assumes there's native logical replication between the databases. Enables the use of the Table Filter ->
publications setting to specify the list of tables to use. Requires PostgreSQL 10+ on all databases.

pglogical : Assumes there's pglogical replication between the databases. Enables the use of the Table Filter ->
replication_sets setting to specify the list of tables to use. Also enables the use of node_name to specify the data connections,
which requires setting the Initial Connection that's used to retrieve DSN information of the nodes. Requires the pglogical
extensions to be installed on all databases.

bdr : Assumes all data connections are nodes from the same PGD cluster. Enables use of the Table Filter ->
replication_sets setting to specify the list of tables to use. Also enables the use of node_name to specify the data connections,
which requires setting the Initial Connection that's used to retrieve DSN information of the nodes. Requires pglogical and
bdr extensions installed on all databases.

all_bdr_nodes : If logical_replication_mode is set to bdr , then you can specify only the Initial Connection and let LiveCompare
build the connection list based on the current list of active PGD nodes. Default: off .

max_parallel_workers : Number of parallel processes to consider. Each process works on a table from the queue. Default: 2 .

ImportantImportant

Each process keeps N+1 open connections: one to each data connection and another one to the output database.

buffer_size : Number of rows to retrieve from the tables on every data fetch operation. Default: 4096 .

log_level : Verbosity level in the log file. Possible values: debug , info , warning , or error . Default: info .

data_fetch_mode : Affects how LiveCompare fetches data from the database.

GRANTGRANT EXECUTEEXECUTE ONON sys.dbms_crypto TOTO testuser;

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 31

prepared_statements : Uses prepared statements (a query with LIMIT) for data fetch. Only a very small amount of data
(buffer_size = 4096 rows by default) is fetched each time, so it has the smallest impact of all three modes, and for the same reason
it's the safer fetch mode. Allows asynchronous data fetch (defined by parallel_data_fetch). For the general use case, this fetch
method provides good performance, but a performance decrease can be felt for large tables. This is the default and strongly recommended
when server load is medium-high.

server_side_cursors_with_hold : Uses server-side cursors WITH HOLD for data fetch. As table data is retrieved in a single
transaction, it holds back xmin and can cause bloat and replication issues and also prevent VACUUM from running well. Also, the WITH
HOLD clause tells Postgres to materialize the query (workers can hang for a few seconds waiting for the data to materialize), so the whole
table data consumes RAM and can be stored on Postgres side disk as temporary files. You can reduce all that impact by using
parallel_chunk_rows (disabled by default), and improve speed by increasing buffer_size a little. Allows asynchronous data

fetch (defined by parallel_data_fetch). For the general use case, this fetch method doesn't provide any benefits when compared to
prepared_stataments , but for multiple small tables it's faster. However, this mode is recommended only when load is very low, for

example, on tests and migration scenarios.

server_side_cursors_without_hold : Uses server-side cursors WITHOUT HOLD for data fetch. As
server_side_cursors_with_hold , this mode can also hold back xmin , thus it potentially can cause bloat, VACUUM , and

replication issues on Postgres. However, such impact is higher because WITHOUT HOLD cursors require an open transaction for the
whole comparison session (this requirement will be lifted in later versions). As the snapshot is held for the whole comparison session,
comparison results might be helpful depending on your use case. As the query isn't materialized, memory usage and temp file generation
remains low. Asynchronous data fetch isn't allowed. In terms of performance, this mode is slower for the general use case, but for large
tables it can be the faster. We recommend it when load on the database is low-medium.

ImportantImportant

The choice of the right data_fetch_mode for the right scenario is very important. Using prepared statements has the smallest footprint on
the database server, so it's the safest approach, and it's good for the general use case. Another point is that prepared statements allow
LiveCompare to always see the latest version of the rows, which might not happen when using server-side cursors on a busy database. So we
recommend using prepared_statements for production, high-load servers and either server_side_cursors_* setting for testing,
migration scenarios, and low-load servers. The best strategy probably mixes server_side_cursors_without_hold for very large
tables and prepared_statements for the remaining tables. The following table shows a comparison of the cost/benefit ratio.

prepared_statements server_side_cursors_with_hold server_side_cursors_without_hold

xmin hold very low medium high

xmin released per buffer chunk whole comparison session

temp files very low very high low

memory very low high low

allows async conns yes yes no

fastest for general small tables large tables

recommended load high very low low-medium

Note about OracleNote about Oracle

For Oracle, the data_fetch_mode setting is completely ignored, and data is always fetched from Oracle using a direct query. Data is taken
in chunks of buffer_size through the client-side cursor.

parallel_chunk_rows : Minimum number of rows required to consider splitting a table into multiple chunks for parallel comparison. A hash is
used to fetch data, so workers don't clash with each other. Each table chunk has no more than parallel_chunk_rows rows. Setting it to any
value <1 disables table splitting. Default: 0 (disabled).

ImportantImportant

While table splitting can help multiple workers to compare a large table in parallel, performance for each worker can be affected by the hash
condition being applied to all rows. Depending on the Postgres configuration (especially with the default of random_page_cost = 4 ,
which can be considered too conservative for modern hard drives), the Postgres query planner can incorrectly prefer bitmap heap scans. If the

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 32

database is running on SSD, disabling bitmap heap scan on LiveCompare can significantly improve the comparison performance. You can do
this per connection using the start_query setting:

parallel_data_fetch : Specifies whether data fetch is performed in parallel (that is, using async connections to the databases). Improves
performance of multi-way comparison. If any data connections aren't PostgreSQL, then this setting is automatically disabled. It's allowed only
when data_fetch_mode = prepared_statements or data_fetch_mode = server_side_cursors_with_hold . Default: on .

comparison_algorithm : Affects how LiveCompare works through table rows to compare data. Using hashes is faster than full-row
comparison. It can assume one of the following values:

full_row : Disables row comparison using hashes. Full comparison, in this case, is performed by comparing the row column by column.

row_hash : Enables row comparison using hashes and enables table splitting. Tables are split so each worker compares a maximum of
parallel_chunk_rows per table. Data row is hashed in PostgreSQL, so the comparison is faster than full_row . However, if the

hash for a specific row doesn't match, then for that specific row, LiveCompare falls back to the full_row algorithm (that is, compare row
by row). If any data connection isn't PostgreSQL, then LiveCompare uses a row hash that's defined as the MD5 hash of the concatenated
column values of the row being considered, a common hash among the database technologies being compared.

block_hash : Works the same as row_hash , but instead of comparing row by row, LiveCompare builds a block hash, that is, a hash of
the hashes of all rows in the data buffer that was just fetched (maximum of buffer_size rows). Conceptually it works like a two-level
Merkle tree. If the block hash matches, then LiveCompare advances the whole block, which is why this comparison algorithm is faster than
row_hash . If block hash doesn't match, then LiveCompare falls back to row_hash and performs the comparison row by row in the

buffer to find the divergent rows. This is the default value.

min_time_between_heart_beats : Time in seconds to wait before logging a heart beat message to the log. Each worker tracks it separately
per round part being compared. Default: 30 seconds.

min_time_between_round_saves : Time in seconds to wait before updating each round state when the comparison algorithm is in progress.
A round save can happen only during a heart beat, so min_time_between_round_saves must be greater than or equal to
min_time_between_heart_beats . When the round finishes, LiveCompare always updates the round state for that table. Default: 60

seconds.

ImportantImportant

If you cancel execution of LiveCompare by pressing Ctrl-CCtrl-C and start it again, then LiveCompare resumes the round for that table, starting
from the point where the round state was saved.

comparison_cost_limit : If > 0, corresponds to a number of rows each worker processes before taking a nap of
comparison_cost_delay seconds. Defaults to 0, meaning that each worker processes rows without taking a nap.

comparison_cost_delay : If comparison_cost_limit > 0 , then this setting specifies how long each worker sleeps. Default: 0.0 .

stop_after_time : Time in seconds after which LiveCompare stop as if you press Ctrl-CCtrl-C. You can resume the comparison session that was
interrupted, if not finished yet, by passing the session ID as an argument in the command line. Default: stop_after_time = 0 , which means
that automatic interruption is disabled.

consensus_mode : Consensus algorithm used by LiveCompare to determine which data connections are divergent. Possible values are
simple_majority , quorum_based , or source_of_truth . If consensus_mode = source_of_truth , then
difference_sources_of_truth must be filled. Default: simple_majority .

difference_required_quorum : If consensus_mode = quorum_based , then this setting specifies the minimum quorum required to
decide which connections are divergent. Must be a number between 0.0 and 1.0. 0.0 means no connection is required, and 1.0 means all
connections are required. Both cases are extreme and we don't recommend using them. The default value is 0.5, and we recommend using a value
close to that.

start_query = set enable_bitmapscan =
off

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 33

difference_sources_of_truth : Comma-separated list of connections names (or node names, if logical_replication_mode =
bdr and all_bdr_nodes = on) to consider as the source of truth. It's used only when consensus_mode = source_of_truth . For
example: difference_sources_of_truth = node1,node2 . In this example, either the sections node1 Connection and node2
Connection must be defined in the .ini file or all_bdr_nodes = on and only the Initial Connection is defined, while node1
and node2 must be valid PGD node names.

difference_tie_breakers : Comma-separated list of connection names (or node names, if logical_replication_mode = bdr and
all_bdr_nodes = on) to be considered as tie breakers whenever the consensus algorithm finds a tie situation. For example:
difference_tie_breakers = node1,node2 . In this example, either the sections node1 Connection and node2 Connections

must be defined in the .ini file or all_bdr_nodes = on and only the Initial Connection is defined, while node1 and node2
must be valid PGD node names. Default: Don't consider any connection as tie breaker.

difference_statements : Controls the kind of DML statements for LiveCompare to generate. The value of difference_statements
can be one of:

all (default)
inserts
updates
deletes
inserts_updates
inserts_deletes
updates_deletes

difference_allow_null_updates : Determines whether commands like UPDATE SET col = NULL are allowed in the difference
report. Default: on .

difference_statement_order : Controls order of DML statements that LiveCompare generates. The value of
difference_statement_order can be one of:

delete_insert_update
delete_update_insert (default)
insert_update_delete
insert_delete_update
update_insert_delete
update_delete_insert

difference_fix_replication_origin : When working with PGD databases, for difference, LiveCompare creates a specific replication
origin if it doesn't exist yet. It then uses the replication origin to create an apply script with DML fixes. The setting
difference_fix_replication_origin specifies the name of the replication origin used by LiveCompare. If you don't set any value for

this setting, then LiveCompare sets difference_fix_replication_origin = bdr_local_only_origin . The replication origin that
LiveCompare creates isn't dropped to allow verification after the comparison. However, if needed, you can manually drop the replication origin
later. Requires logical_replication_mode = bdr .

ImportantImportant

PGD 3.6.18 introduced the new pre-created bdr_local_only_origin replication origin to use for applying local-only transactions. So if
LiveCompare is connected to PGD 3.6.18, it doesn't create this replication origin, and we recommend you don't try to drop this replication
origin.

difference_fix_start_query : Arbitrary query that's executed at the beginning of the apply script generated by LiveCompare.
Additionally, if a PGD comparison is being performed and the difference_fix_start_query is empty, then LiveCompare also
automatically does the following:

If the divergent connection is PGD 3.6.7, adds SET LOCAL bdr.xact_replication = off;
Adds commands that set up transaction to use the replication origin specified in difference_fix_replication_origin

show_progress_bars : Determines whether to show progress bars in the console output. Disabling this setting might be useful for batch
executions. Default: on .

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 34

output_schema : In the output connection, the schema where the comparison report tables are created. Default: livecompare .

hash_column_name : Every data fetch contains a specific column that's the hash of all actual columns in the row. This setting specifies the
name of this column. Default: livecompare_hash .

rownumber_column_name : Some fetches need to use the row_number() function value inside a query column. This setting specifies the
name of this column. Default: livecompare_rownumber .

fetch_row_origin : When this setting is enabled, LiveCompare fetches the origin name for each divergent row, which might be useful for
debugging purposes. To be enabled, requires logical_replication_mode set to pglogical or bdr . Default: off .

column_intersection : When this setting is enabled, for a given table that's being compared, LiveCompare works only on the intersection of
columns from the table on all connections, ignoring extra columns that might exist on any of the connections. When this setting is disabled,
LiveCompare checks if columns are equivalent on the table on all connections and aborts the comparison of the table if there are any column
mismatches. Default: off .

ImportantImportant

If a table has PK, then the PK columns aren't allowed to be different, even if column_intersection = on .

ignore_nullable : For a specific table comparison, if LiveCompare is using a comparison key different from the primary key, then LiveCompare
requires all columns to be NOT NULL if ignore_nullable is enabled (default). You can override that behavior by setting
ignore_nullable = off , which allows LiveCompare to consider null-able columns in the comparison, which in some corner cases can

produce false positives.

check_uniqueness_enforcement : If LiveCompare is using a user-defined comparison key or using all columns in the table as a comparison
key, then LiveCompare checks for table uniqueness on the comparison key if setting check_uniqueness_enforcement is enabled (default).

oracle_ignore_unsortable : When enabled, tells LiveCompare to ignore columns with Oracle unsortable data types (BLOB, CLOB, NCLOB,
BFILE) if column isn't part of the table PK. If enabling this setting, we recommend also enabling column_intersection .

oracle_user_tables_only : When enabled, tells LiveCompare to fetch table metadata only from the Oracle logged-in user. This approach is
faster because it reads, for example, from sys.user_tables and sys.user_tab_columns instead of sys.all_tables and
sys.all_tab_columns . Default: off .

oracle_fetch_fk_metadata : When enabled, tells LiveCompare to fetch foreign-key metadata, which can be a slow operation. Overrides the
value of the setting fetch_fk_metadata on the Oracle connection. Default: off .

schema_qualified_table_names : Table names are treated as schema qualified when this setting is enabled. Disabling it allows comparing
tables without using schema-qualified table names. On Oracle x Postgres comparisons, it requires also enabling oracle_user_tables_only .
On Postgres x Postgres, it allows for comparisons of tables that are under different schemas, even in the same database. Also, when
schema_qualified_table_names is enabled, Table Filter -> tables , Row Filter , and Column Filter allow table name

without the schema name. Default: on .

force_collate : When set to a value other than off and to a valid collation name, forces the specified collation name in ORDER BY
operations in all Postgres databases being compared. Useful when comparing Postgres databases with different collation or when comparing
Oracle and Postgres databases. (In this case, set force_collate = C .) Assumes value C if comparing mixed technologies (like Oracle versus
PostgreSQL) and no collation is specified. Default: off .

work_directory : Path to the LiveCompare working directory. The session folder containing output files is created in this directory.
Default: . (current directory).

abort_on_setup_error : When enabled, if LiveCompare encounters any error when trying to set up a table comparison round, the whole
comparison session is aborted. Default: off .

ImportantImportant

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 35

Setting abort_on_setup_error is considered only during compare mode. In recheck mode, LiveCompare always aborts at the first
error in setup.

custom_dollar_quoting_delimiter : When LiveCompare finds differences, it outputs the DML using dollar quoting on strings. The default
behavior is to create a random string to compose it. If you want by any means to use a custom one, you can set this parameter as the delimiter to
use. You need to set only the constant, not the $ symbols around the constant. Default: off , which means LiveCompare uses an md5 hash of
the word LiveCompare .

session_replication_role_replica : When enabled, LiveCompare uses the session_replication_role PostgreSQL setting as
replica in the output apply scripts. That's useful if you want to prevent firing triggers and rules while applying DML in the nodes with

divergences. Enabling it requires a PostgreSQL superuser. Otherwise, it has no effect. Default: off .

split_updates : When enabled, LiveCompare splits UPDATE divergences. That is, instead of generating an UPDATE DML, it generates
corresponding DELETE and INSERT in the apply script. Default: off .

float_point_round : An integer to specify decimal digits that LiveCompare rounds when comparing float-point values coming from the
database. Default: -1 , which disables float-point rounding.

Initial Connection

The initial connection is used only when logical_replication_mode is set to pglogical or bdr . If you set data connections to use only the
node_name setting, it's used when the program starts to fetch DSN from node names.

technology : RDBMS technology. Currently the only possible value is postgresql .
dsn : PostgreSQL connection string. If dsn is set, then host , port , dbname , and user are ignored. The dsn setting can also have all

other parameter key words allowed by libpq.
host : Server address. Leave empty to use the Unix socket connection.
port : Port. Default: 5432 .
dbname : Database name. Default: postgres .
user : Database user. Default: postgres .
application_name . Application name. Can be used even if you set dsn instead of all other connection information. Default:
livecompare_initial .

Output Connection

The output connection specifies where LiveCompare creates the comparison report tables.

technology : RDBMS technology. Currently the only possible value is postgresql .
dsn : PostgreSQL connection string. If dsn is set, then host , port , dbname , and user are ignored. The dsn setting can also have all

other parameter key words allowed by libpq.
host : Server address. Leave empty to use the Unix socket connection.
port : Port. Default: 5432 .
dbname : Database name. Default: postgres .
user : Database user. Default: postgres .
application_name . Application name. Can be used even if you set dsn instead of all other connection information. Default:
livecompare_output .

Data Connection

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 36

https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-PARAMKEYWORDS
https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-PARAMKEYWORDS

A data connection is a connection section similar to Initial Connection and Output Connection , but LiveCompare effectively fetches and
compares data on the data connections.

Similar to the Initial Connection and Output Connection , a data connection is defined in a named section. The section name is of the form
<Name> Connection , with <Name> being any single-word string starting with an alphabetic character. In this case, whatever you use as Name is

called the connection ID of the data connection. Each data connection must also have a unique connection ID in the list of data connections.

If logical_replication_mode = bdr and all_bdr_nodes = on , then you don't need to specify any data connection. LiveCompare builds
the data connection list by fetching PGD metadata from the Initial Connection .

technology : RDBMS technology. Currently possible values are postgresql or oracle .
node_name : Name of the node in the cluster. Requires logical_replication_mode set to pglogical or bdr and also requires that

the Initial Connection is filled. If node_name is set, then dsn , host , port , dbname , and user settings are all ignored.
dsn : PostgreSQL connection string. If dsn is set, then host , port , dbname , and user are ignored. The dsn setting can also have all

other parameter key words allowed by libpq.
host : Server address. Leave empty to use the Unix socket connection.
port : Port. Default: 5432 .
dbname : Database name. Default: postgres .
service : Service name, used in Oracle connections. Default: XE .
user : Database user. Default: postgres .
password : Plain text password. We don't recommend using this. However, it might be required in some legacy connections.
application_name . Application name. Can be used even if you set dsn or node_name instead of all other connection information. Default:
livecompare_<Connection ID> .
start_query : Arbitrary query that's executed each time a connection to a database is open.
fetch_fk_metadata : Specifies whether LiveCompare gathers metadata about foreign keys on the connection. Default: on .

Table Filter

If omitted or left empty, this section from the .ini file means that LiveCompare executes against all tables in the first database.

If you want LiveCompare to execute against a specific set of tables, there are different ways to specify this:

publications : You can filter specific publications, and LiveCompare uses only the tables associated with those publications. You can use the
variable publication_name to build the conditional expression, for example:

Requires logical_replication_mode = native .

replication_sets : When using pglogical or PGD, you can filter specific replication sets, and LiveCompare works only on the tables
associated with those replication sets. You can use the variable set_name to build the conditional expression, for example:

Requires logical_replication_mode = pglogical or logical_replication_mode = bdr .

schemas : You can filter specific schemas, and LiveCompare works only on the tables that belong to those schemas. You can use the variable
schema_name to build the conditional expression, for example:

tables : The variable table_name can help you build a conditional expression to filter only the tables you want LiveCompare to work on, for

publications = publication_name =
'livepub'

replication_sets = set_name in ('default',
'bdrgroup')

schemas = schema_name !=
'badschema'

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 37

https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-PARAMKEYWORDS

example:

In any conditional expression, escape the % character as %% .

The table name must be schema-qualified, unless schema_qualified_table_names is disabled. For example, you can filter only a specific list of
tables:

tables = table_name in ('myschema1.mytable1', 'myschema2.mytable2')

If you disable the general setting schema_qualified_table_names , then you must also set an appropriate search_path for Postgres in the
connection start_query setting, for example:

[General Setting]
...
schema_qualified_table_names = off

[My Connection]
...
start_query = SET search_path TO myschema1, myschema2

[Table Filter]
tables = table_name in ('mytable1', 'mytable2')

ImportantImportant

If two or more schemas that were set on search_path contain a table with the same name, just the first one found is considered in the
comparison.

The Table Filter section can have a mix of publications , replication_sets , schemas , and tables filters. LiveCompare considers
the set of tables that are in the intersection of all filters you specified. For example:

The table filter is applied in the first database to build the table list. If a table exists in the first database and is being considered in the filter, but it doesn't
exist in any other database, then you something like this is added to the logs, and the comparison for that specific table is skipped:

2019-06-17 11:52:41,403 - ERROR - live_table.py - 55 - GetMetaData - P1: livecompare_second_1: Table
public.test does not exist
2019-06-17 11:52:41,410 - ERROR - live_round.py - 201 - Initialize - P1: Table public.test does not exist
on second connection. Aborting comparison

Similarly, if a table exists in any other database but doesn't exist in the first database, then it isn't considered in the comparison, even if you didn't apply
any table filter.

A comparison for a specific table is also skipped if the table column names aren't exactly the same (unless column_intersection is enabled), and in
the same order. An appropriate message is added to the log file as well.

tables = table_name not like
'%%account'

[Table Filter][Table Filter]
publications = publication_name =
'livepub'
replication_sets = set_name in ('default',
'bdrgroup')
schemas = schema_name !=
'badschema'
tables = table_name not like
'%%account'

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 38

Currently LiveCompare doesn't check if data types or constraints are the same on both tables.

ImportantImportant

conflicts mode doesn't make use of the table filter.

Row Filter

In this section, you can apply a row-level filter to any table, so LiveCompare works only on the rows that satisfy the row filter.

You can write a list of tables under this section, one table per line. All table names must be schema qualified unless
schema_qualified_table_names is disabled. For example:

In this case, for the table public.table1 , LiveCompare works only in the rows that satisfy the clause id = 10 . For the table public.table2 ,
only rows that satisfy logdate >= '2000-01-01 are considered in the comparison.

If you disable the general setting schema_qualified_table_names , then you must also set an appropriate search_path for Postgres in the
connection start_query setting, for example:

[General Setting]
...
schema_qualified_table_names = off

[My Connection]
...
start_query = SET search_path TO public

[Row Filter]
table1 = id = 10
table2 = logdate >= '2000-01-01'

Any kind of SQL condition (same as you put in the WHERE clause) is accepted in the same line as the table row filter. For example, if you have a large
table and want to compare only a specific number of IDs, you can create a temporary table with all the IDs. Then you can use an IN clause to emulate a
JOIN , like this:

[Row Filter]
public.large_table = id IN (SELECT id2 FROM temp_table)

If a row filter is written incorrectly, then LiveCompare tries to apply the filter but fails. So the comparison for this specific table is skipped, and an
exception is written to the log file.

If a table is listed in the Row Filter section but somehow got filtered out by the Table Filter , then the row filter for this table is silently
ignored.

ImportantImportant

conflicts mode doesn't make use of the row filter.

[Row Filter][Row Filter]
public.table1 = id =
10
public.table2 = logdate >= '2000-01-
01'

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 39

Using current timestamp in Row Filter

The Row Filter is applied differently depending on the data_fetch_mode :

On Postgres, setting data_fetch_mode to server_side_cursors_with_hold or server_side_cursors_without_hold
causes the Row Filter to be applied only at the beginning of the table comparison, when the query is executed. This means that using a server-
side cursor to fetch data ensures the data is seen as a snapshot of how it was beginning of the comparison.
On Postgres, setting data_fetch_mode to prepared_statements (the default) includes the Row Filter in the prepared query, which
is then executed at every data buffer that's fetched. This means that, if the query uses now() , CURRENT_TIMESTAMP , or SYSDATE (on EDB
Postgres Advanced Server) on the Row Filter , then when the prepared statement executes, Postgres reevaluates the current timestamp.

So, suppose you're using now() , CURRENT_TIMESTAMP , or SYSDATE on the Row Filter , for example:

[Row Filter]
public.table3 = logdate < CURRENT_TIMESTAMP

In this case, you must also use a server-side cursor to ensure the current timestamp is evaluated only at the beginning of the queries. In other words,
data_fetch_mode must be set to a value different from prepared_statements .

On Oracle, the data_fetch_mode setting is ignored, and the query is executed at the beginning. Then data is fetched by way of the client-side cursor.
This approach ensures data is seen as a snapshot of how it was at the beginning of the comparison. This is a client-side cursor, but the behavior is similar
to using a server-side cursor in Postgres.

Column Filter

In this section, you can apply a column-level filter to any table, so LiveCompare works only on the columns that aren't part of the column filter.

You can write a list of tables under this section, one table per line. All table names must be schema qualified unless
schema_qualified_table_names is disabled. For example, suppose that both public.table1 and public.table2 have the columns
column1 , column2 , column3 , column4 , and column5 :

In this case, for the table public.table1 , LiveCompare works only in the columns column2 , column4 , and column5 , filtering out column1
and column3 . For the table public.table2 , only the columns column2 , column3 , and column4 are considered in the comparison, filtering
out column1 and column5 .

If you disable the general setting schema_qualified_table_names , then you must also set an appropriate search_path for Postgres in the
connection start_query setting, for example:

[General Setting]
...
schema_qualified_table_names = off

[My Connection]
...
start_query = SET search_path TO public

[Column Filter]
table1 = column1, column3

[Column Filter][Column Filter]
public.table1 = column1,
column3
public.table2 = column1,
column5

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 40

table2 = column1, column5

If absent column names are given in the column filter, that is, the column doesn't exist in the given table, then LiveCompare logs a message about the
missing columns and ignores them. It uses just the valid ones, if any.

If a table is listed in the Column Filter section but somehow got filtered out by the Table Filter , then the column filter for this table is silently
ignored.

ImportantImportant

If a column specified in a Column Filter is part of the table PK, then it isn't ignored in the comparison. LiveCompare logs that and ignores
the filter of such a column.

ImportantImportant

conflicts mode doesn't make use of the column filter.

Comparison Key

New featureNew feature

LiveCompare comparison key support is available in LiveCompare version 2.0 and later.

Similar to the Column Filter , in this section you can also specify a list of columns per table. These columns are considered as a comparison key for
the specific table, even if the table has a primary key or UNIQUE constraint.

For example:

In this example, for table public.table1 , the comparison key is columns col_a and col_b . For table public.table2 , columns c1 and c2
are considered as a comparison key.

The same behavior about missing columns or filtered out or missing tables that are explained in Column Filter, also apply to the comparison key. Similarly,
the Comparison Key section is ignored in conflicts mode.

Conflicts Filter

In this section, you can specify a filter to use in --conflicts mode while fetching conflicts from PGD nodes. You can build any SQL conditional
expression and use these fields in the expression:

origin_node : The upstream node of the subscription.
target_node : The downstream node of the subscription.
local_time : The timestamp when the conflict occurred in the node.
conflict_type : The type of conflict.
conflict_resolution : The resolution that was applied.
nspname : Schema name of the involved relation.

[Comparison Key][Comparison Key]
public.table1 = col_a,
col_b
public.table2 = c1,
c2

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 41

relname : Relation name of the involved relation.

You must use the conflicts attribute under the section. For example:

[Conflicts Filter]
conflicts = conflict_type = 'update_missing' AND nspname = 'my_schema'

If you add this piece of configuration to your .ini file, LiveCompare fetches only conflicts that are of type update_missing and related to tables
under the schema my_schema while querying for conflicts in each of the PGD nodes.

ImportantImportant

This section is exclusively for --conflicts mode.

10 Licenses

TQDM

tqdm is a product of collaborative work. Unless otherwise stated, all authors (see commit logs) retain copyright for their respective work, and release
the work under the MIT licence (text below).

Exceptions or notable authors are listed below in reverse chronological order:

files: * MPLv2.0 2015-2020 (c) Casper da Costa-Luis casperdcl.
files: tqdm/_tqdm.py MIT 2016 (c) PR #96 on behalf of Google Inc.
files: tqdm/_tqdm.py setup.py README.rst MANIFEST.in .gitignore MIT 2013 (c) Noam Yorav-Raphael, original author.

Mozilla Public License (MPL) v. 2.0 - Exhibit A

This Source Code Form is subject to the terms of the Mozilla Public License, v. 2.0. If a copy of the MPL wasn't distributed with this file, you can obtain one
at https://mozilla.org/MPL/2.0/.

MIT License (MIT)

Copyright (c) 2013 noamraph

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 42

https://github.com/casperdcl
https://github.com/tqdm/tqdm/pull/96
https://mozilla.org/MPL/2.0/

cx_Oracle

LICENSE AGREEMENT FOR CX_ORACLE

Copyright © 2016, 2020, Oracle and/or its affiliates. All rights reserved.

Copyright © 2007-2015, Anthony Tuininga. All rights reserved.

Copyright © 2001-2007, Computronix (Canada) Ltd., Edmonton, Alberta, Canada. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions, and the disclaimer that follows. Redistributions in binary
form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials
provided with the distribution. Neither the names of the copyright holders nor the names of any contributors may be used to endorse or promote products
derived from this software without specific prior written permission. DISCLAIMER: THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS AS IS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Computronix ® is a registered trademark of Computronix (Canada) Ltd.

© Copyright 2016, 2020, Oracle and/or its affiliates. All rights reserved. Portions Copyright © 2007-2015, Anthony Tuininga. All rights reserved. Portions
Copyright © 2001-2007, Computronix (Canada) Ltd., Edmonton, Alberta, Canada. All rights reserved Revision 10e5c258.

Apache license

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that
entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity,
whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such
entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source,
and configuration files.

"Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled
object code, generated documentation, and conversions to other media types.

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 43

"Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice
that is included in or attached to the work (an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial
revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License,
Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative
Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or
Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal
Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal,
or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source
code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving
the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a
Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide,
non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform,
sublicense, and distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-
exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import,
and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily
infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If
You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution
incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for
that Work shall terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and
in Source or Object form, provided that You meet the following conditions:

(a) You must give any other recipients of the Work or Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from
the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of
the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at
least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if
provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally
appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional
attribution notices cannot be construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use,
reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution
of the Work otherwise complies with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the
Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing
herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except
as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 44

Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without
limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are
solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of
permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by
applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including
any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to
use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other
commercial damages or losses), even if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee
for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting
such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree
to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of
your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

Psycopg2

psycopg2 is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option) any later version.

psycopg2 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

In addition, as a special exception, the copyright holders give permission to link this program with the OpenSSL library (or with modified versions of
OpenSSL that use the same license as OpenSSL), and distribute linked combinations including the two.

You must obey the GNU Lesser General Public License in all respects for all of the code used other than OpenSSL. If you modify file(s) with this exception,
you may extend this exception to your version of the file(s), but you are not obligated to do so. If you do not wish to do so, delete this exception statement
from your version. If you delete this exception statement from all source files in the program, then also delete it here.

You should have received a copy of the GNU Lesser General Public License along with psycopg2 (see the doc/ directory.) If not, see
https://www.gnu.org/licenses/.

Alternative licenses

The following BSD-like license applies (at your option) to the files following the pattern psycopg/adapter*.{h,c} and
psycopg/microprotocol*.{h,c} :

Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject
to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a
product, an acknowledgment in the product documentation would be appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 45

https://www.gnu.org/licenses/

Tabulate

Copyright (c) 2011-2020 Sergey Astanin and contributors

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. © 2020 GitHub, Inc.

OmniDB

MIT License

Portions Copyright (c) 2015-2019, The OmniDB Team Portions Copyright (c) 2017-2019, 2ndQuadrant Limited

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

LiveCompare

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 46

	1 LiveCompare
	Comparison performance
	Security considerations for the user

	2 Release notes
	2.1 LiveCompare 2.5 release notes
	2.2 LiveCompare 2.4 release notes
	2.3 LiveCompare 2.3 release notes
	2.4 LiveCompare 2.2 release notes
	2.5 LiveCompare 2.1 release notes
	2.6 LiveCompare 2.0 release notes
	3 Requirements
	LiveCompare with TPAexec

	4 Supported technologies
	PgBouncer support

	5 Command-line usage
	Compare mode
	Recheck mode
	Conflicts mode
	Dry-run mode

	6 Advanced usage
	Aborting comparisons
	Comparison key
	Differences to fix
	Difference log

	7 EDB Postgres Distributed support
	PGD witness nodes
	Differences in a PGD cluster
	Conflicts in PGD
	Conflict example
	Conflicts Filter

	Mixing technologies

	8 Oracle support
	Requirements
	Oracle Instant Client
	cx_Oracle Python module

	Differences
	BLOB and CLOB data types
	Incompatible collation
	Common hash

	9 Settings
	General settings
	Initial Connection
	Output Connection
	Data Connection
	Table Filter
	Row Filter
	Using current timestamp in Row Filter

	Column Filter
	Comparison Key
	Conflicts Filter

	10 Licenses
	TQDM
	Mozilla Public License (MPL) v. 2.0 - Exhibit A
	MIT License (MIT)

	cx_Oracle
	Apache license

	Psycopg2
	Alternative licenses

	Tabulate
	OmniDB

